Unraveling Key Metabolomic Alterations in Wheat Embryos Derived from Freshly Harvested and Water-Imbibed Seeds of Two Wheat Cultivars with Contrasting Dormancy Status
نویسندگان
چکیده
Untimely rains in wheat fields during harvest season can cause pre-harvest sprouting (PHS), which deteriorates the yield and quality of wheat crop. Metabolic homeostasis of the embryo plays a role in seed dormancy, determining the status of the maturing grains either as dormant (PHS-tolerant) or non-dormant (PHS-susceptible). Very little is known for direct measurements of global metabolites in embryonic tissues of dormant and non-dormant wheat seeds. In this study, physiologically matured and freshly harvested wheat seeds of PHS-tolerant (cv. Sukang, dormant) and PHS-susceptible (cv. Baegjoong, non-dormant) cultivars were water-imbibed, and the isolated embryos were subjected to high-throughput, global non-targeted metabolomic profiling. A careful comparison of identified metabolites between Sukang and Baegjoong embryos at 0 and 48 h after imbibition revealed that several key metabolic pathways [such as: lipids, fatty acids, oxalate, hormones, the raffinose family of oligosaccharides (RFOs), and amino acids] and phytochemicals were differentially regulated between dormant and non-dormant varieties. Most of the membrane lipids were highly reduced in Baegjoong compared to Sukang, which indicates that the cell membrane instability in response to imbibition could also be a key factor in non-dormant wheat varieties for their untimely germination. This study revealed that several key marker metabolites (e.g., RFOs: glucose, fructose, maltose, and verbascose), were highly expressed in Baegjoong after imbibition. Furthermore, the data showed that the key secondary metabolites and phytochemicals (vitexin, chrysoeriol, ferulate, salidroside and gentisic acid), with known antioxidant properties, were comparatively low at basal levels in PHS-susceptible, non-dormant cultivar, Baegjoong. In conclusion, the results of this investigation revealed that after imbibition the metabolic homeostasis of dormant wheat is significantly less affected compared to non-dormant wheat. The inferences from this study combined with proteomic and transcriptomic studies will advance the molecular understanding of the pathways and enzyme regulations during PHS.
منابع مشابه
Functional genomics of seed dormancy in wheat: advances and prospects
Seed dormancy is a mechanism underlying the inability of viable seeds to germinate under optimal environmental conditions. To achieve rapid and uniform germination, wheat and other cereal crops have been selected against dormancy. As a result, most of the modern commercial cultivars have low level of seed dormancy and are susceptible to preharvest sprouting when wet and moist conditions occur p...
متن کاملSeed Maturation Regulators Are Related to the Control of Seed Dormancy in Wheat (Triticum aestivum L.)
In Arabidopsis, the regulation network of the seed maturation program controls the induction of seed dormancy. Wheat EST sequences showing homology with the master regulators of seed maturation, leafy cotyledon1 (LEC1), LEC2 and FUSCA3 (FUS3), were searched from databases and designated respectively as TaL1L (LEC1-LIKE), TaL2L (LEC2-LIKE), and TaFUS3. TaL1LA, TaL2LA and TaFUS3 mainly expressed ...
متن کاملSeed dormancy and responses of caryopses, embryos, and calli to abscisic Acid in wheat.
Preharvest sprouting of wheat (Triticum aestivum L.) is associated with inadequate seed dormancy. Although abscisic acid (ABA) has often been suggested to play a central role in developing seed, its involvement in dormancy of mature seed lacks firm experimental evidence and endogenous ABA levels are not well correlated with germinability. We examined genotypic and temporal variation in wheat se...
متن کاملIdentification of transcripts potentially involved in barley seed germination and dormancy using cDNA-AFLP.
Freshly harvested barley seeds are considered as dormant since they do not germinate at temperatures above 20 degrees C. This dormancy is broken during dry storage. Molecular regulation of dormancy was investigated using cDNA-AFLP to identify transcripts differentially expressed in dormant and non-dormant embryos. Transcript patterns in embryos from dry dormant and non-dormant seeds and from bo...
متن کاملInheritance of seed dormancy in Tibetan semi-wild wheat accession Q1028.
Tibetan semi-wild wheat (Triticum aestivum ssp. tibetanum Shao) is one of the Chinese endemic hexaploid wheat genetic resources, distributed only in the Qinghai-Xizang Plateau of China. It has special characters, such as a hulled glume and spike disarticulation. However, seed dormancy, another important character for wheat resistance to pre-harvest sprouting, was rarely reported. Seed dormancy ...
متن کامل